75 research outputs found

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints

    Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis

    Get PDF
    Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg2+-responsive PhoP protein dictates expression of Mg2+ transporters and of enzymes that modify Mg2+-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg2+ stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals

    Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis

    Get PDF
    Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg2+-responsive PhoP protein dictates expression of Mg2+ transporters and of enzymes that modify Mg2+-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg2+ stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals

    Attenuation of the Sensing Capabilities of PhoQ in Transition to Obligate Insect–Bacterial Association

    Get PDF
    Sodalis glossinidius, a maternally inherited endosymbiont of the tsetse fly, maintains genes encoding homologues of the PhoP-PhoQ two-component regulatory system. This two-component system has been extensively studied in facultative bacterial pathogens and is known to serve as an environmental magnesium sensor and a regulator of key virulence determinants. In the current study, we show that the inactivation of the response regulator, phoP, renders S. glossinidius sensitive to insect derived cationic antimicrobial peptides (AMPs). The resulting mutant strain displays reduced expression of genes involved in the structural modification of lipid A that facilitates resistance to AMPs. In addition, the inactivation of phoP alters the expression of type-III secretion system (TTSS) genes encoded within three distinct chromosomal regions, indicating that PhoP-PhoQ also serves as a master regulator of TTSS gene expression. In the absence of phoP, S. glossinidius is unable to superinfect either its natural tsetse fly host or a closely related hippoboscid louse fly. Furthermore, we show that the S. glossinidius PhoQ sensor kinase has undergone functional adaptations that result in a substantially diminished ability to sense ancestral signals. The loss of PhoQ's sensory capability is predicted to represent a novel adaptation to the static symbiotic lifestyle, allowing S. glossinidius to constitutively express genes that facilitate resistance to host derived AMPs

    Defining the Plasticity of Transcription Factor Binding Sites by Deconstructing DNA Consensus Sequences: The PhoP-Binding Sites among Gamma/Enterobacteria

    Get PDF
    Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs) using a machine learning method inspired by the “Divide & Conquer” strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target genes and/or the promoter architectures resulting from the interaction of those binding sites with the RNA polymerase
    corecore